<< 超訳・物理学 >>

ラグランジアンエントロピー、この2つを受け入れれば、古典物理学は理解できる。
さらに光速度プランク定数、この2つを受け入れれば、現代物理学は理解できる。

=== 古典力学 ===

【相対性原理】

あらゆる慣性系(観測者の立場)は同等であり、特別な慣性系は存在しない。

最小作用の原理】(停留作用の原理)

物体の運動にともなって変化するラグランジアンと呼ばれる量がある。
あらゆる物体の運動は、ラグランジアンの合計値(時間についての積分)を最小とする形で実現する。
ラグランジアンの合計値のことを“作用”という。

  外力の影響を受けない物体の運動に、何らかの最小作用を満たすような値があるとすれば、
  その値は相対性原理から、速度の2乗の関数でなければならない。
  その速度の2乗の関数を、我々は“運動エネルギー”と呼んでいる。
  さらに、物体がその位置から受ける影響(外力の影響)を位置エネルギーと呼び、
  {(運動エネルギー)-(位置エネルギー)} ラグランジアンと定義する。
  あらゆる物体の運動は、
    S = ∫ L dt
        -- S:作用, L:ラグランジアン, t:時刻

  が停留値をとる形で実現する。

=== 熱・統計力学 ===

エントロピー増大の法則】

あらゆるマクロな物事の変化は、実現する確率がより高い方へと向かう。
とあるマクロな状態が実現するような、ミクロな状態の場合の数の対数をエントロピーという。
  S = k log W    (ボルツマンの関係式)
    -- S:エントロピー, k:ボルツマン定数, W:ミクロな状態数

エントロピーはあらゆる変化の実質的な原動力であり、あらゆる変化はエントロピーが増大する方向に進む。

=== 特殊相対性理論 ===

作用は離れた場所に瞬時に伝わるのではなく、伝わる速度には上限がある。
その上限値とは、光速度のことである。

光速度不変の原理】

真空中の光の速さは、光源の速度によらず、どんな慣性系から見ても一定となる。
  →
異なる慣性系の間で、時間の経過、2点間の距離は、一般には異なる。
時空間の基準となるモノサシは、特定の慣性系における1秒の長さ、1メートルではなく、光の速さである。
異なる複数の慣性系から見て、いつでも光速度が一定になるように、時間と距離は調整されていなければならない。
  ※ その調整方法のことをローレンツ変換といい、調整済みであることをローレンツ不変”という。

=== 一般相対性理論 ===

等価原理

重力による加速と、物体の運動による加速は等価であり、区別できない。
  →
我々の住む時空間は、(ユークリッド空間と比べて)僅かに歪んでいる。
歪んだ時空間の中を、物体がまっすぐ最短経路で運動する様子を外から見ると(別の慣性系から見ると)、あたかも物体が力を受けているかのように見える。
その力のことを、我々は“重力”と呼んでいる。

=== 場の理論 ===

重力を空間の幾何学的な歪みとして理解できるように、あらゆる種類の力、例えば電磁気力などもまた、ある種の空間の幾何学的な歪みとして理解することができる。
  ※ ある種の空間のことを“場(Field)”という。

あらゆる場は、ローレンツ不変である(光速度不変の原理を満たす)。

それぞれの場には、対応する“ラグランジアン”がある。
それぞれの場における運動もやはり、対応するラグランジアンの作用が最小となる形で実現している。

=== 量子力学 ===

あらゆる物体は、2乗すると(複素共役と掛け合わせると)存在確率となるような、複素数の波動から成り立っている。
波動とは、振幅と位相を持つ何らかの複素数の量の変動なのだが、その全容を我々が直接観測することはできない。
我々が直接観測できるのは、波動の実数成分だけである。

不確定性原理

作用には、それ以上分割できない最小単位がある。
最小単位より小さな値は、どうがんばっても定めることができず、不定な量が残る。
  ※ この最小単位をプランク定数という。

最小単位のため、作用が与えられた場は、離散的にカウントできる(1個, 2個, 3個・・・と区別して数えることができる)状態をとる。
そのカウントできる状態のことを、我々は“粒子”と呼んでいる。

あらゆる物体は、複素数の波であると同時に粒子でもある(状態がカウントできる波である)。
対象がカウントできる状態にあることを ~ つまり“粒子”だと見なせることを、量子化されている”という。
あらゆる場は、量子化されている ~ つまり“粒子”だと見なせる。

=== 無限・計算理論 ===

無限には大小のレベルがあり、そのレベルのことを“濃度”という。
最も濃度の小さな無限は、1,2,3・・・と続く自然数の無限で、“可算無限”と呼ばれている。
数直線上の点の数は、“可算無限”より濃度の大きい“非可算無限”である。
濃度は、それもまた無限に大きくなり得る。
数直線上の点の数よりさらに濃度の大きい無限が、無限に存在する。

計算機械の持ち得るアルゴリズムの全ては可算無限なので、本質的に非可算無限に属する問題を解くことはできない。
どんなアルゴリズムを以てしても、この世のほとんどの問題は解けない。


言いたかったのは以上なので、以下は蛇足。

きっかけは以下のひと言にあった。
「力学はラグランジアンという1個の量だけ認めれば定式化でき、熱力学はエントロピーという1個の量だけ認めれば定式化できる」
>> http://as2.c.u-tokyo.ac.jp/~shmz/zakkifiles/07-08-21.html
実際、「熱力学の基礎」という本では、エントロピーから他の全てを導いている。
温度という当たり前に思える量でさえも、エントロピーから導かれる。
ランダウ力学」という有名な(しかし高度な)教科書では、ラグランジアンから他の全てを導いている。
物理学とは恐ろしいほどまでに体系立った学問で、ほんのわずかの基礎原理から、他の全てが導出される。
“暗記”は極限まで少なくて、あとは“考えれば分かる”のだ。

では、物理学に最低限必要な“暗記”はどれだけあるのか?
そう思って必要最低限の“暗記”部分を私なりにリストアップしたのが、上の<< 超訳・物理学 >>となった。
最低限、これだけ頭にたたき込んでおけば、あとは“考えれば分かる”はずなのである。
“暗記”が少ない分、うんと考えないといけないのだが、それでも考え続ければ、いつかは必ず分かる。
必ず分かるようにできている。

そのように考えると、最大の謎は
 「この世界が、考えれば分かるようにできているのは何故か?」
ということになる。
この謎は <<物理学>> のリストには(今のところ)入らないし、考え続ければ必ず分かる、という保証も無い。
謎である。

熱力学の基礎

熱力学の基礎

  • 作者:清水 明
  • 発売日: 2007/03/01
  • メディア: 単行本